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Abstract

Communication of uncertainty is important for both ra-

diology reports and deep neural networks (DNNs). For ra-

diologists, conveying diagnostic uncertainty in the written

report is a challenging and yet inevitable task. On the other

hand, while deep learning models have shown compelling

potentials in disease classification and lesion detection, ap-

plications of DNNs in the medical domain should provide a

quantitative measurement of prediction confidence for risk

management purposes. In this paper, we investigate the re-

lationship between uncertainty in diagnostic chest x-ray ra-

diology reports and uncertainty estimation of correspond-

ing DNN models using Bayesian approaches. Two sam-

pling methods, Bernoulli and Gaussian dropout have been

tested. Our results show that the incorporation of uncer-

tainty labels during model training results in higher predic-

tive variance for uncertain cases at test time. The uncertain

cases are inherently difficult to diagnose for human readers,

which often needs a further psychical examination to con-

firm. Returning uncertain predictions on these cases will

prevent the DNN model from making over-confident mis-

takes.

1. Introduction

Deep neural networks (DNNs) have achieved state-of-

the-art performance across a wide range of computer vision

tasks. Integrating DNNs into clinical workflows have drawn

extensive interests and efforts [8]. However, there are a lim-

ited number of existing literatures discussing the predictive

uncertainty of DNNs for such applications. Representing

uncertainty is crucial to handling out-of-distribution sam-

ples, defending adversarial attacks, and managing risk, es-

pecially in the healthcare sectors where diagnostic reliably

should be closely monitored. In this research, we inves-

tigate the correlation between uncertainty in the radiology
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report and uncertainty in DNNs. We quantify the DNN un-

certainty by different sampling methods based on different

dropout distributions.

1.1. Uncertainty in Radiology report

The radiology report is the primary means of communi-

cation between one radiologist and other physicians. Ra-

diologists are constantly balancing between brevity and

clarity to make sure that the intended level of confidence

is conveyed accordingly to the readers [1]. Despite sub-

stantial advancement of the imaging technologies in re-

cent centuries, radiologists still face a great deal of uncer-

tainty in their daily work. A typical radiology report [5]

can read:“Cardiac size is top normal. Bibasilar opacities,

larger on the left side, could be due to atelectasis but super-

imposed infection cannot be excluded.” Words like “could

be” and “cannot be excluded” indicates ambiguity but cur-

rently, there are no rigorous standards in determining the

extent of uncertainty. Another source of radiography un-

certainty comes from the physical limitation of the imaging

modality. A representative case would be diagnosing car-

diomegaly with chest x-rays. Cardiomegaly is the enlarge-

ment of the heart that may cause other complications like

blood clots and heart failure. A chest x-ray screen is usu-

ally how cardiomegaly is detected. However, confirmation

of cardiomegaly requires a blood test or an electrocardio-

gram because different patient positioning during the scan

can effectively alter the appearance of the heart in an x-ray

image. A DNN system that is being overconfident on im-

ages with inherent constraints could lead to erroneous and

harmful conclusions.

1.2. Related Work

The current state-of-the-art methods for evaluating the

uncertainty of DNNs are Bayesian-based methods that form

a posterior distribution of the network parameters [2]. From

a Bayesian viewpoint, training a DNN concerns finding the

maximum a posterior (MAP) of the weight matrices W

given the training dataset D = (X,Y), where X denotes
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the training inputs and Y denotes the corresponding labels.

Given a new query input x, the posterior predictive distri-

bution is

p(y |x,D) =

∫
p(y |x,W)p(W | D) dW. (1)

However, the posterior p(W | D) is often analytically in-

tractable, and the alternative is to employ a variational dis-

tribution q(W) to approximate p(W | D), such that

p(y |x,D) =

∫
p(y |x,W)q(W)dW. (2)

q(W) is usually optimized by minimizing the Kullblack-

Leiber (KL) divergence between q(W) and p(W | D). The

posterior predictive distribution can now be approximated

through Monte-Carlo sampling of the weights from q(W),

p(y |x,D) ≃
1

T

T∑
t=1

p(y |x,Wt), (3)

where T denotes the number of stochastic forward passes,

which is equivalent to the number of Monte-Carlo sam-

ples. Numerous methods have been formulated for vari-

ational distribution [7] based on different sampling dis-

tribution, e.g., Bernoulli, Gaussian, and Spike-and-Slab

dropout. Previous research [6] has explored using dropout-

based Bayesian uncertainty measures for diagnosing dia-

betic retinopathy and their results established an informa-

tive interpretation of the source of uncertainty.

2. Method

2.1. Data

We trained and experimented on two large publicly avail-

able chest x-ray datasets, CheXpert [4] and Chest X-ray-

14 (CXR-14) [9]. The CheXpert dataset contained 224,316

chest radiographs from 65,240 patients while the CXR-14

dataset contained 108,948 chest radiographs from 32,717

patients. Both datasets used rule-based Natural Language

Processing (NLP) labeler to extract 14 common mentions

from raw radiology reports. The main difference between

the two datasets lies in the inclusion of uncertainty label

and the disease categories. The CheXpert labeler extracted

uncertain findings of the disease that are denoted as u, while

the CXR-14 omitted such mentions. For the CheXpert la-

bels, some diseases are more likely to be marked as un-

certain than others. For example, uncertain labels consti-

tute 15.66% and 12.78% of all atelectasis and consolida-

tion respectively. The two datasets have 7 disease labels

in common: Atelectasis, Cardiomegaly, Effusion, Pneumo-

nia, Pneumothorax, Consolidation, and Edema. Our exper-

iments are conducted on the 7 overlapping diseases.

Figure 1. Female patient diagnosed with lung opacity and fracture

and suspected of cardiomegaly, edema, atelectasis and pleural ef-

fusion.

2.2. Deep Bayesian Network

In deep learning frameworks, a straightforward approach

to performing sampling is multiplying the feature maps F
with a sampling matrix M̂ where each element is drawn

from some distribution M ,

Ŵ = F ⊙ M̂ , (4)

where ⊙ denotes element-wise multiplication. The differ-

ence between each sampling method is, therefore, the dis-

tribution that the elements in M̂ are generated from.

Bernoulli and Gaussian Dropout We describe two meth-

ods for generating the sampling matrix. The Bernoulli

dropout samples each entity in the mask independently from

a Bernoulli distribution. The probability of a connection be-

ing dropped is therefore Bern(1− p). In Gaussian dropout,

each element is sampled from a Gaussian distribution with

mean µ and variance σ2. Element (i, j, k) of the sampling

matrix is therefore M̂i,j,k ∼ N (µ, σ).

2.3. Uncertainty Labels

We compare different approaches to utilizing the uncer-

tainty label from the CheXpert dataset in model training.

The two main methods we tried were binary mapping and

separate label classification.

Binary mapping In this setting, the u labels are mapped

to either positive, negative, or simply ignored during train-

ing. In the CheXpert paper [4], these methods served as

baseline methods for performance evaluation. In our exper-

iments, we have ignored samples with the u labels.

Uncertainty classification With uncertainty classification,

the u labels are treated as a separate class from positive and

negative labels. During inference time, the softmax function

is restrained to only positive and negative class predictions.

3. Experiments

Two independent DenseNet-121 [3] were trained for

each of the aforementioned datasets. We use 50 Monte-

Carlo samples during test time. For both datasets, we use

only the frontal-view images. Since there were no uncer-

tain labels in the official CheXpert validation set, we split
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the training set into 80% training and 20% validation. The

learning rate was set at 1 × 10−4. The Bernoulli dropout

rate was set at 0.5, while the mean and standard deviation

of the Gaussian dropout were 0 and 1, respectively.

Figure 2. Predictive variance across 7 diseases

3.1. Uncertain radiologist diagnosis

We compared the results of using binary mapping for un-

certainty labels and as a separate class label. Fig 2 show-

case the prediction variances of DenseNet-121 trained on

the CheXpert dataset. The line plot indicates the percent-

age of total uncertainty label for a disease category. The

two bar plots represent the average prediction variance of 50

Monte-Carlo samples scaled by 104 for easier visualization.

We observe that disease classes with a higher percentage of

uncertain label tend to have prediction with higher uncer-

tainty as well. Furthermore, treating the uncertain label as

a separate class during training will lead to low confidence

predictions of uncertain cases in test time.

3.2. Out of distribution samples

To study the effects of uncertainty label on out-of-

distribution samples, we cross-validated the two models

on the validation set of its counterparts. Namely, we pre-

dicted on the CXR-14 dataset validation set using the model

trained on CheXpert and vice versa. Fig 3 illustrate a pa-

tient with a positive label of effusion and suspected of at-

electasis, consolidation, and cardiomegaly. Effusion was

correctly predicted for both models. However, the CheX-

pert model trained on uncertain labels gave predictions that

were less confident but closely resembled the ground truth

of suspecting cardiomegaly and consolidation.

To evaluate the uncertainty estimation, we calculate the

entropy of the predictive distribution. Given a query image

x and corresponding predictiony, the entropy can be calcu-

lated as

H(y |x) = −

∫
p(y |x) log p(y |x) dy. (5)

A robust DNN model should return higher entropy on out-

of-distribution samples even if the imaging modality is the

Figure 3. Left: Input image. Right upper: CXR-14 model. Right

lower: CheXpert model

same. This is due to the fact that data collected from another

imaging center may have different imaging protocols and

the human user should proceed these cases with caution.

Our experiment results are shown in Table 1. Both models

produced higher predictive entropy on dataset that was not

seen.

Table 1. Average predictive entropy across 7 common diseases.

Higher entropy indicates uncertainty predictions.
Model CXR-14 model CheXpert model

Bernoulli dropout on CXR-14 0.182 0.531

Bernoulli dropout on CheXpert 0.428 0.308

Gaussian dropout on CXR-14 0.377 0.552

Gaussian dropout on CheXpert 0.440 0.379

4. Discussion and Future Work

In this work, we have established a connection between
radiology uncertainty and DNN uncertainty. We demon-
strate that incorporating uncertainty labels as a separate
class during training enables the model to produce fewer
confidence predictions on ambiguous cases as opposed to
models trained with binary labels. Being able to produce an
uncertain prediction on inconclusive cases holds significant
clinical value as these cases often require physical exami-
nation or biopsy to confirm. By incorporating uncertainty
information, typical over-confident mistakes of DNNs can
be avoided. We acknowledge some limitations of our work
that can be addressed in future work. First, the CheXpert
official validation set provided ground truth labels by hav-
ing multiple radiologists manually labeling the images and
therefore does not contain uncertain labels. There is limited
information on the quality and extent of the uncertain labels
in the training set. Second, the current analysis is conducted
on extracted labels from the original radiology report. The
extraction process is not perfect compared to radiologist-
annotated ground truth. With the release of the free-form
radiology report from the CheXpert dataset in the future, a
direct comparison of uncertainty from the radiology report
and DNNs can be made. Our work can be further extended
to the quantification of confidence in radiology vocabularies
such as “possibly”, “suggestive of”, “consistent with”, “not
entirely excluded”, etc.
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